Betti Numbers of a Class of Barely G 2 Manifolds
نویسندگان
چکیده
منابع مشابه
Betti numbers of a class of barely G2 manifolds
We calculate explicitly the Betti numbers of a class of barely G2 manifolds that is, G2 manifolds that are realised as a product of a Calabi-Yau manifold and a circle, modulo an involution. The particular class which we consider are those spaces where the CalabiYau manifolds are complete intersections of hypersurfaces in products of complex projective spaces and the involutions are free acting.
متن کاملBetti numbers of random manifolds
We study mathematical expectations of Betti numbers of configuration spaces of planar linkages, viewing the lengths of the bars of the linkage as random variables. Our main result gives an explicit asymptotic formulae for these mathematical expectations for two distinct probability measures describing the statistics of the length vectors when the number of links tends to infinity. In the proof ...
متن کاملTight Combinatorial Manifolds and Graded Betti Numbers
In this paper, we study the conjecture of Kühnel and Lutz, who state that a combinatorial triangulation of the product of two spheres S×S with j ≥ i is tight if and only if it has exactly i+2j+4 vertices. To approach this conjecture, we use graded Betti numbers of Stanley–Reisner rings. By using recent results on graded Betti numbers, we prove that the only if part of the conjecture holds when ...
متن کاملAmenable Covers, Volume and L-betti Numbers of Aspherical Manifolds
We provide a proof for an inequality between volume and LBetti numbers of aspherical manifolds for which Gromov outlined a strategy based on general ideas of Connes. The implementation of that strategy involves measured equivalence relations, Gaboriau’s theory of L-Betti numbers of R-simplicial complexes, and other themes of measurable group theory. Further, we prove new vanishing theorems for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Mathematical Physics
سال: 2010
ISSN: 0010-3616,1432-0916
DOI: 10.1007/s00220-010-1152-2